

Solar PV technology at scale: how can A/help?

Dr Roberto Castello

EPFL Swiss Data Science Center (formerly at EPFL LESO-PB)

Solar and the building

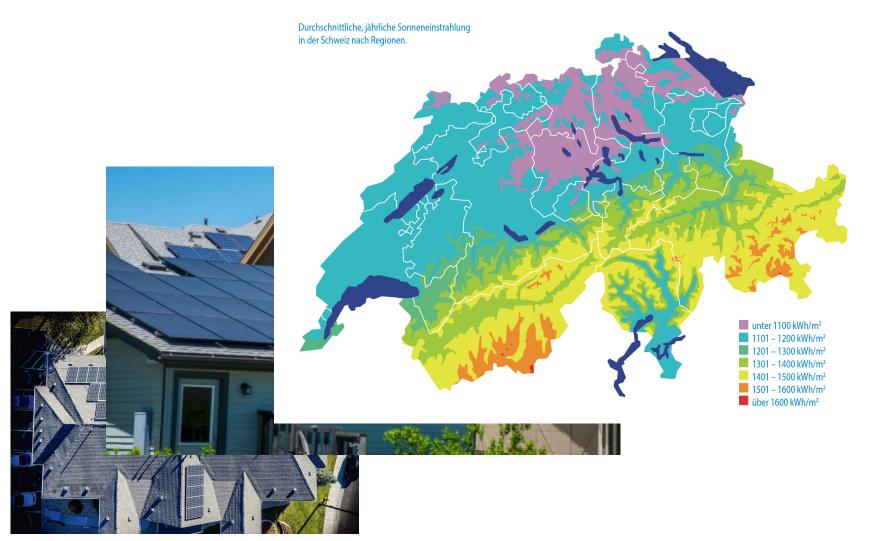
Easy.

Solar and the city

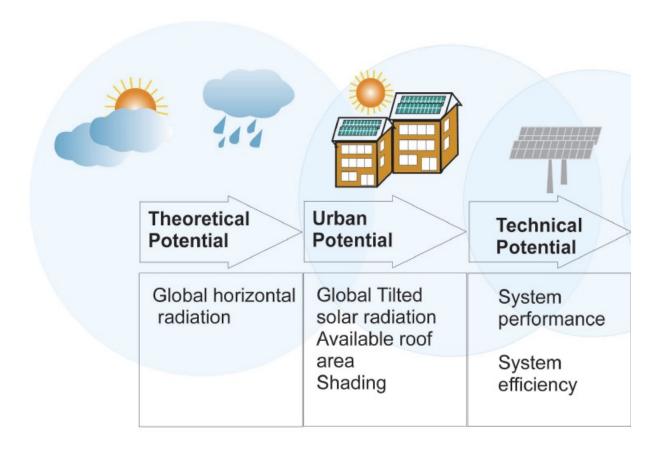
Challenging.

Solar and the country

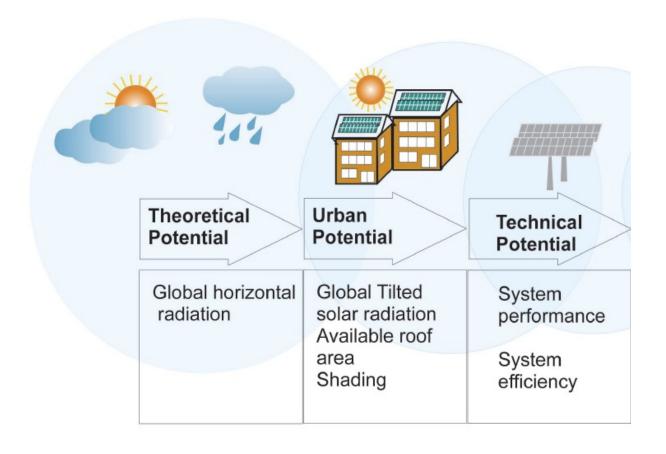
Only for braves.



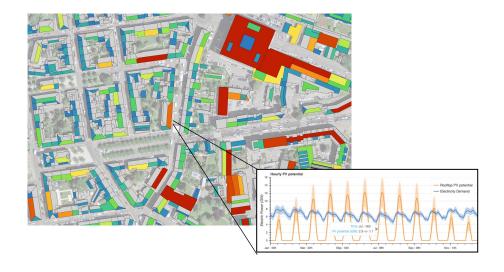
Rooftop solar PV potential for CH



Rooftop solar PV potential for CH



[Walch et al, Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty, 2020]

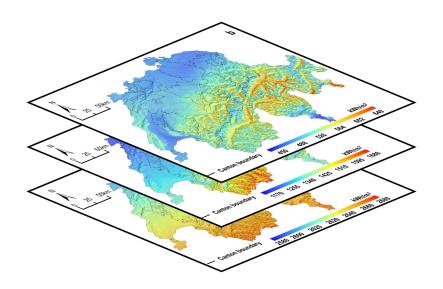


First attempt to go at hourly scale for each building of Switzerland

Data, resolution and coverage

Meteorological data

8760 hours - 12 yrs - (1.6 x 2.3) km²



- Solar radiation
- Temperature

Building data

9.6M roofs

- Slope/orientation
- ♦ Footprint
- Superstructures (only for GVA)

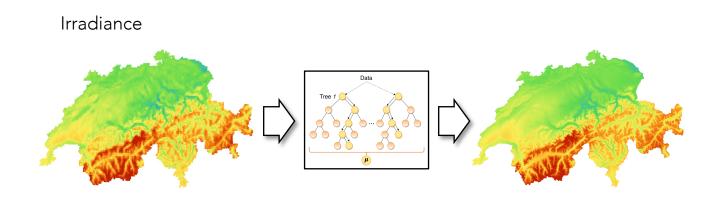
Digital elevation models

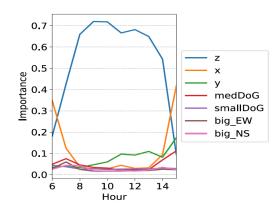
 $2 \times 2 \text{ m}^2 / 0.5 \times 0.5 \text{ m}^2$ only for GVA

♦ Shadow

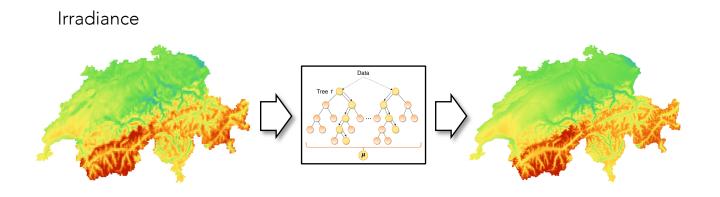
Supervised regression: Extreme Learning Machine (ELM) Ensemble / Random Forest (RF)

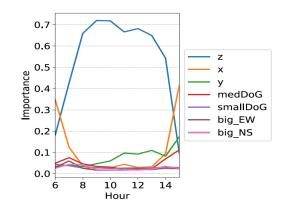
Supervised regression: Extreme Learning Machine (ELM) Ensemble / Random Forest (RF)



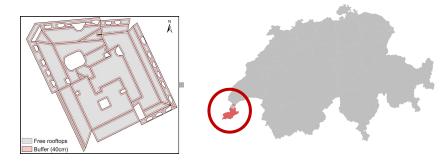


Supervised regression: Extreme Learning Machine (ELM) Ensemble / Random Forest (RF)



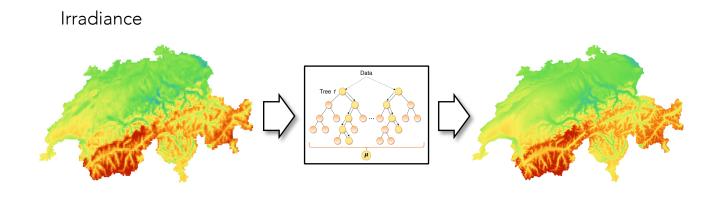


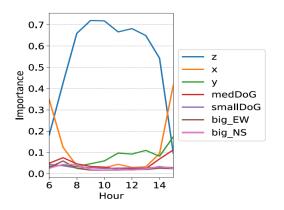
Suitable rooftop area and shading



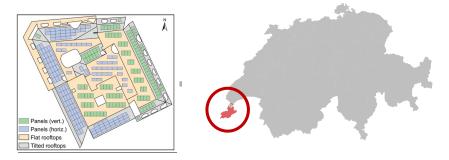
Only for GVA canton

Supervised regression: Extreme Learning Machine (ELM) Ensemble / Random Forest (RF)



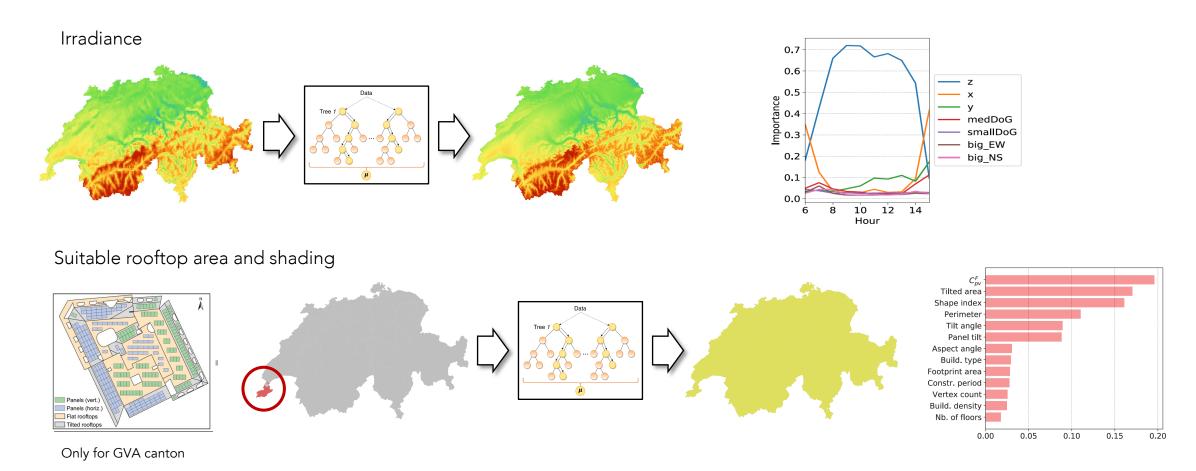


Suitable rooftop area and shading

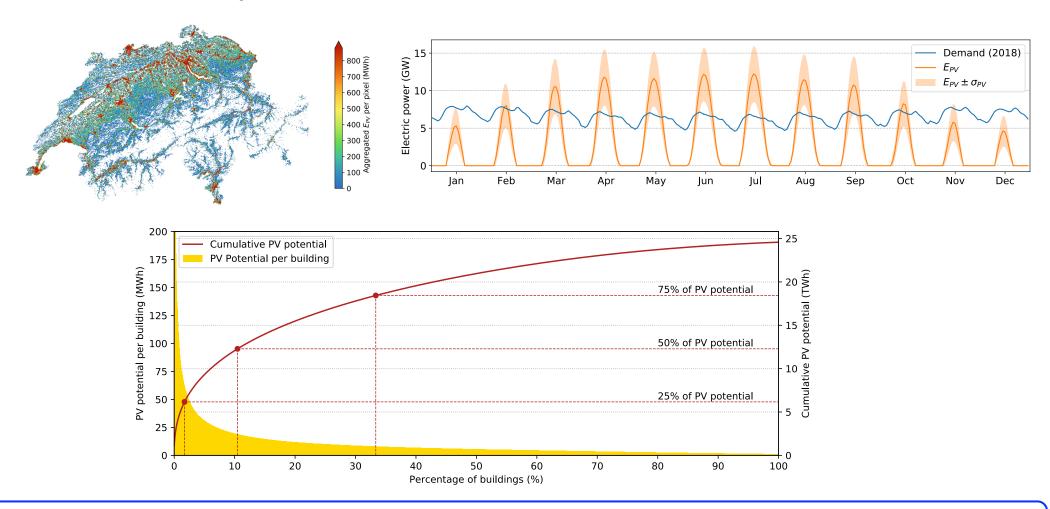


Only for GVA canton

Supervised regression: Extreme Learning Machine (ELM) Ensemble / Random Forest (RF)



Solar PV potential for CH



If all the suitable roofs were exploited, 40% of Swiss electricity demand (2018) can be hit

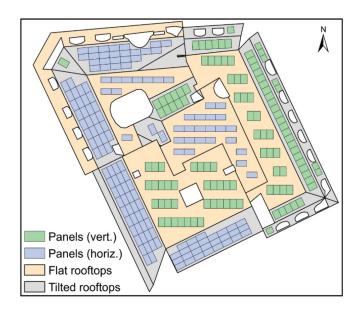
Available area for PV: dealing w/ superstructures

Dormers, chimneys, HVAC, windows typically ignored, but they are not "available"

[Sonnendach, Swisstopo BFE]

Available area for PV: dealing w/ superstructures

Dormers, chimneys, HVAC, windows typically ignored, but they are not "available"

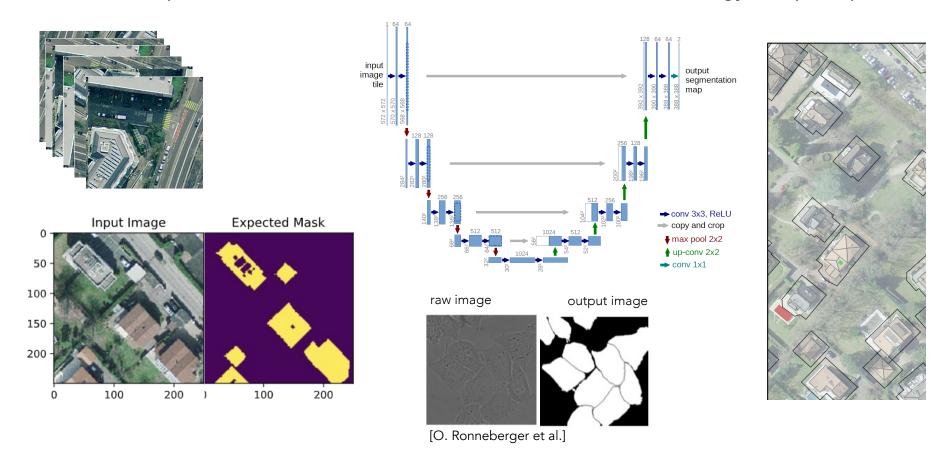


[Sonnendach, Swisstopo BFE]

Custom-fitting not scalable to 9.6 million rooftops in CH RF regression is one way, but can be improved

Leveraging high-res aerial images and CV

- Aerial images at high resolution (Swiss Federal Office of Topography)
- Convolutional Neural Networks for pixel-wise semantic segmentation (U-Net)
- 3D rooftop dataset (Sonnendach, Swiss Federal Office of Energy) for post-processing

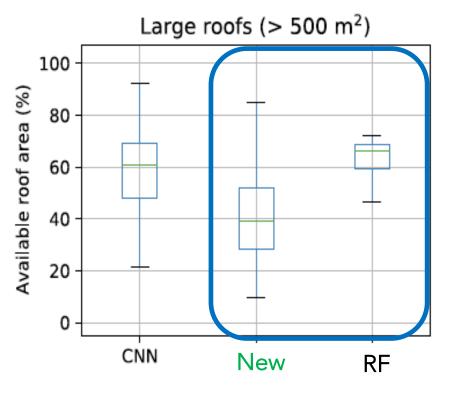


A more realistic quantification

- ♦ Virtually placing 1.6 m² panels onto the detected available areas from CNN
- Comparing to the RF large-scale estimate (same algorithm to virtually install PVs)

A more realistic quantification

- ♦ Virtually placing 1.6 m² panels onto the detected available areas from CNN
- Comparing to the RF large-scale estimate (same algorithm to virtually install PVs)



[Castello et al., Quantification of the suitable rooftop area for solar panel installation from overhead imagery using Convolutional Neural Networks, 2021]

Materials Science and Technology

The solar energy potential

Theoretical

Global solar horizontal radiation (from direct and diffuse)

$$G_h(t) = G_B(t) + G_D(t)$$

Geographical/Urban

 \diamond Radiation over tilted rooftops (G_t) and suitable areas for PV (A_{PV}) considering rooftops' slope and direction, along with shading

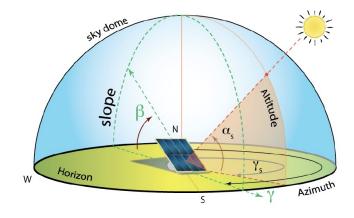
$$G_t(t) = (1 - S_{sh}(t)) * G_{Bt}(t) + SVF * G_{Dt}(t) + G_{Rt}(t)$$

$$A_{PV} = A_t * C_{pv} * (1 - C_{sh})$$

Technical

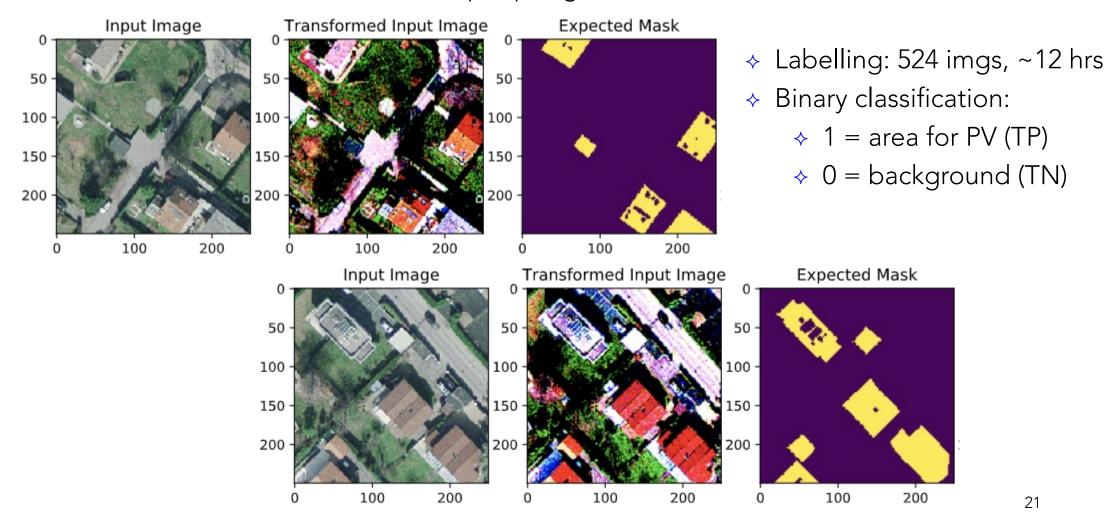
♦ Losses from panel efficiency (η_{PV} , around 0.17) and performance ratio (*PF*, around 0.8)

$$E_{PV} = G_t(t) * A_{PV} * \eta_{PV}(t) * PF(t)$$

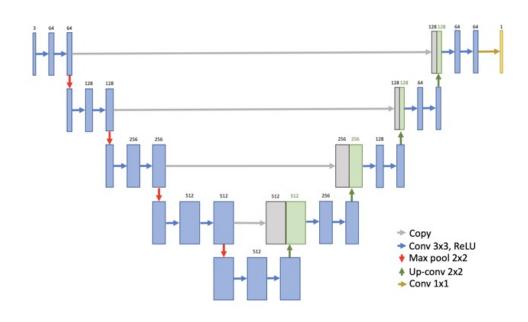


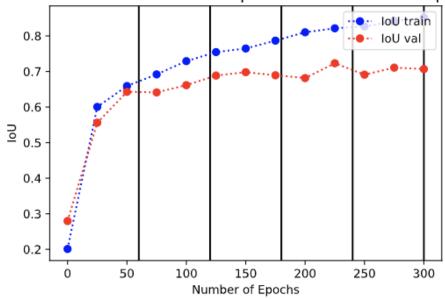
Example of data preparation

Increased saturation + random crop/flip + gaussian noise



The CNN training





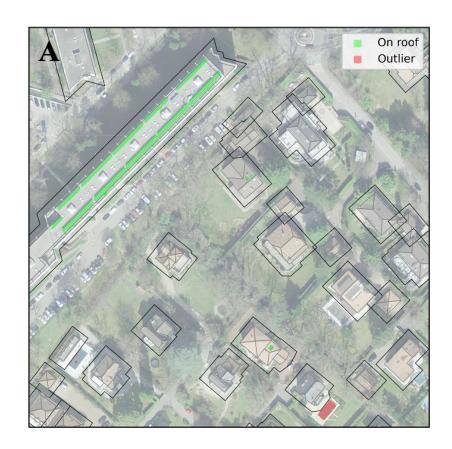
	IoU	Accuracy	Recall	Precision
Training	0.8823	0.9794	0.9299	0.9437
Validation	0.7211	0.9464	0.8360	0.8508
Test	0.6420	0.9307	0.7522	0.7874

Geospatial post-processing

- 3D rooftop dataset from Sonnendach (SFOE)
- Adding contextual information, such as the size, tilt and orientation and location of the roof
- Shapes are buffered to account for misalignments

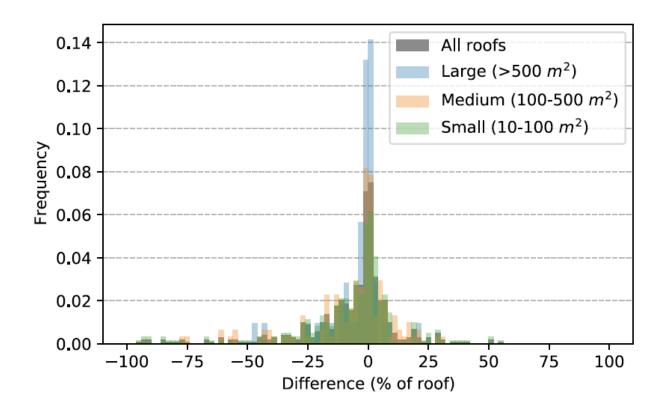
As a result:

- Remove false positive pixels outside buildings
- Correct the area for the roof tilt (cosine)



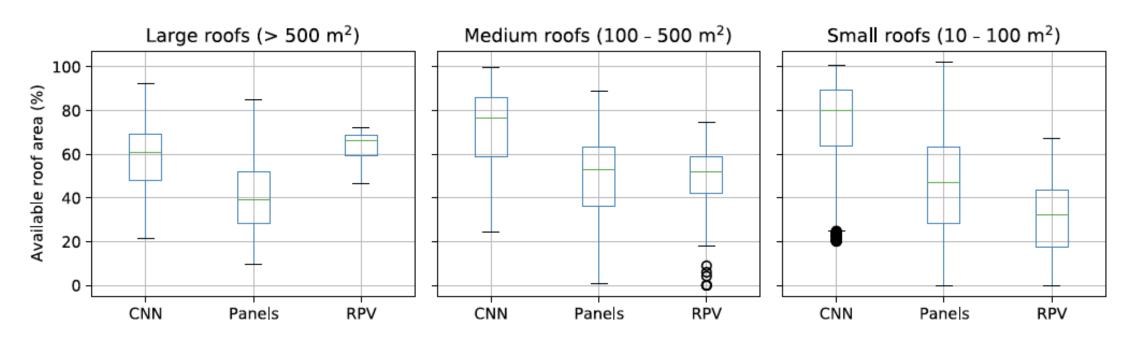
Results

CNN-based model applied to two areas of Geneva (2391 buildings, mostly residential)



Underestimate the available area per roof by 8% (test set of 52 images)

How good compared to others?



- Panels and RPV directly comparable
- Available area on large roofs seems overestimated by RPV (HVAC?)
- Overall, the overestimation is offset by smaller detected area for small roofs

	All roofs		
	CNN	Panels	RPV
Total area (10 ³ m ²)	98.5	65.8	65.4
Mean % of roof	74	45.4	33.1
Std. % of roof	19.6	22.5	17.9
Median % of roof	79	47.7	35

