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It all started with a stroll...
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Is there a walk through the city that would cross
each of those bridges once and only once?

In 1736, Euler demonstrated this is not possible,
using a graph abstraction.

In 285+ years, graph theory provided many more

theoretical results and graph metrics.
Source: Wikipedia



Graphs are everywhere ...

Social media
Logistics
Bioinformatics

Text analysis

Brain modeling
Business processes

Fraud detection
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Why should we care?

Graphs are powerful computational models, fundamental to reason about and
generate new knowledge from inter-connected entities.

Graphs are challenging...

- To build
- To analyse at scale
- To predict

... but bring wisdom to (big) data.

Sustainable Finance — using knowledge graphs to model impacts on the Earth System



https://olafbrugman.medium.com/sustainable-business-and-the-earth-system-4aa33630950b?source=user_profile---------15----------------------------
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Meet the panel

Prof. Angela Bonifati
University of Lyon1

Prof. Ana-Lucia Varbanescu
University of Twente, NL

[ ¥ == Prof. Adriana lamnitchi.

Prof. Torsten Hoefler University of Maastricht, NL;
ETH Zurich



What’s next?

Prof. Angela Bonifati
University of Lyon1

Prof. Ana-Lucia Varbanescu
University of Twente, NL

Panel will present their views on graph processing and its challenges.
...followed by a (lively!) discussion with the audience.



Prof. Angela Bonifati
University of Lyon1



About myself

Professor in Computer Science at Lyon 1 University (France)
Leader of the Database group at LIRIS CNRS lab (France)
Adjunct Professor at the University of Waterloo (Canada)
Expertise on Big data, graph querying and indexing,
property graphs, graph schemas and constraints, schema
discovery, graph transformations, graph streaming,
distributed graph databases with performance guarantees
Member of WGs on standard graph query languages and ot G s Vo
property graph schemas (LDBC and ISO/IEC committees) —

Querying Graphs




Graphs are universal! Everyone™ uses graphs!

Graphs provide a universal and simple blueprint for Tech-driving applications = data science + multi-
how to look at the world and make sense of it. hop relationships

“not yet :-(

Data -‘ Information Knowledge




A plethora of applications

e Among which, the covidgraph.org

initiative aiming at building the - [
_ Doy e P
Covid19 knowledge graph: e © © @' .
o Collecting patents, publications iy e prem= P e

about the human coronaviruses

Neus:

o Biomedical data (genomics and
omics)

o Experimental data about clinical
trials

o Key demographic indicators
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http://covidgraph.org

Several graph database engines on the rise

e The number of graph engines is growing over the years as well as their
popularity

DB-Engines Ranking of Graph DBMS Neod;j

— Microsoft Azure Cosmos DB
ArangoDB
OrientDB

— Virtuoso

— JanusGraph
GraphDB

— Amazon Neptune

— TigerGraph

una
AllegroGraph

Giraph
— Nebula Graph

0.1

Score (logarithmic scale)

0.01

© June 2021, DB-Engines.com

0.001 12V
2013 2014 2015 2016 2017 2018 2019 2020 2021 /
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Dynamic and Streaming Graphs

Dynamic graphs are graphs that can
accommodate updates (insertions,

deletions, changes) and allow querying ¢ ° Sct‘r’gi"?f;g:’ag:gcu't PramSmat
on the new/old state € - @ Unbounded = don’t see entire graph
Streaming graphs are graphs that are X _ ' .
unbound as new data arrives at high- ®® o B RESTCRDR gD
Speed- — i t — > Time
Current systems and libraries focus on
aggregates/projections and disregard ©
complex analytics (recursion, pathsas © ©
results of graph queries)

®» ®

t ts ts
[Pa20] A. Pacaci, A. Bonifati and T. Ozsu.: Regular Path Query Evaluation on Streaming Graphs. SIGMOD Conference 2020: 1415-1430 13

[Pa22] A. Pacaci, A. Bonifati and T. Ozsu. Evaluating Complex Queries on Streaming Graphs. In IEEE ICDE 2022 (Best Paper Award)



PG-Keys: keys for property graphs

e Declaratively specify the scope of the key and its values in

your favourite PG query language (a parameter of PG-Keys).

Here we use Cypher-like syntax.

e Forinstance

o FOR p WITHIN (p:Person) IDENTIFIER p.login; says that “each person
is identified by their login”, and

o FOR fWITHIN (f:Forum)<-[:joined]-(:Person) IDENTIFIER f.name, p
WITHIN (f)<-[:moderates]-(p:Person); says that “each forum with a
member is identified by its name and moderator”.

€3 . Email

email: akir@g.jp
verified: 17.10.20

¢, :Email

email: ak@fuji.jp
verified: 14.07.20

P2 :Person

:joined

(’

name: Akira
login: akira

1

fo :Forum

:moderates :has

:joined
year: 2020 year: 2019

title: Databases

1 :Person

name: Hayvao
login: hkuro

€ :Email

i
;

email: h@oki.nl
verified: 12.04.21

[An21] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens,
Filip Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda, Slawek Staworko, Dominik Tomaszuk:PG-Keys: Keys for Property

Graphs. SIGMOD Conference 2021: 2423-2436
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Graph processing ecosystems

e Complex workflows combining OLTP and OLAP processing are needed in
order to handle heterogeneous data and heterogeneous queries and

algorithms in full-fledged graph ecosystems

S s s
Processing :
' Formalism
Non-Graph p % :
Data Sources H H H
#— ' b Graph ' s
! ata H '
: Model Database ' :
) Graph : Graph OLTP Operations { | Machine  Business |
— Extraction | LA Learning In‘Qelllgence LY
~— 4 ‘ : ’S
Relational | H
Database Extracted H 1 | H
Gm?hs Graph OLAP Operations : Scientific Augmented Reality ‘ Plgc7ssfd
: . ' Computing & Visualization | : ulpu
Gg)h Graph-Based Engines H
: ; Algorithm
Graph ETL for k‘iﬁ Graph I:nal ics
Data Graph Data : Graph pEnginey'
! Workflow »

[Sa21] S.Sakr et al. The Future is Big Graphs! a community view on graph processing systems. Commun. ACM 64(9): 62-71 (2021)
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Graph analytics at scale

Multi-hop analysis faces combinatorial scaling problem: Every step deeper into the graph
multiplies the number of choices and cases to consider

Ll = =y TS S
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Dealing with this technical challenge is not the typical business interest of a user.
Which challenges are ahead of us to ready graph processing systems for the future?

Challenges to overcome: Abstractions, Ecosystems, Performance
17



Graph Analytics challenges require expertise of many
different fields

Computer systems

Data management systems
Data management theory
Data analytics

Visualization

Human computer interaction
ML/Artificial Intelligence

0\

[collaborate by ArmOkay from the Noun Project]
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Prof. Adriana lamnitchi,
University of Maastricht, NL



Adriana lamnitchi

e Professor/Chair of Computational Social Sciences, Maastricht
University, NL
o Until 2021 Professor of Computer Science at University of South Florida, USA
e Expertise in large-scale networked systems, network science, social

media forensics, social media modeling/forecasting

2022

W [j31] E & ® € Sameera Horawalavithana , Nazim Choudhury, John Skvoretz, Adriana lamnitchi
Online discussion threads as conversation pools: predicting the growth of discussion
threads on reddit. Comput. Math. Organ. Theory 28(2): 112-140 (2022)

W [j30] B & ® < KinWai Ng @, Sameera Horawalavithana, Adriana lamnitchi:
Social media activity forecasting with exogenous and endogenous signals. Soc. Netw. Anal.
Min. 12(1): 102 (2022)

W [c54] B & ® € Catalina Goanta, Thales Bertaglia, Adriana lamnitchi:
The Case for a Legal Compliance API for the Enforcement of the EU's Digital Services Act on
Social Media Platforms. FAccT 2022: 1341-1349
20



Stories with graphs: an information campaign

| THE WHITE HELMETS—SYRIA'S NOBLE
RESCUERS—HAVE TO BE RESCUED BY ISRAEL

The White Helmets: a Syrian volunteer
organization known for:
e Humanitarian actions
e Efforts to rescue civilians in war zones
during the Syrian civil conflict

e Refusal to align with groups or military - =2 L
factions . \ P gy

They also provided:
e \ideo footage documentation of search - The
o Guardian

and rescue operations i
. . . Inside the Conspiracy Theory That HowsynasWhlte_ )
e Videos showing the human impact of Tumed Syia'sFirst Responders nto. ML LIQ Rl
the conflict LIRS

21



Data Forensic Questions

e Are there signs of coordinated actions in promoting videos on YouTube?
(single platform) (Choudhury et al., 2020 and NG et al., 2021)
o We discovered the promotion of near-identical videos posted in different

channels
e How are YouTube videos publicized on Twitter and Facebook? (multiple

platforms) (NG et al., 2021)
We discovered unusual patterns of synchronized behavior between users from

O
® : : : : :
e Multi-platform Information Operations: Twitter, Facebook and YouTube against
Strategic Information Operation in the White Helmets
YouTube: The Case of the White Helmets
Kin Wai NG, Sameera Horawalavithana, Adriana Iamnitchi
University of South Florida

Nazim Choudhury®)®, Kin Wai Ng®, and Adriana Iamnitchi kinwaing @usf.edu, sameeral @usf.edu, anda@cse.usf.edu

University of South Florida, Tampa, USA
{nachoudhury, kinvaing,aii}Gust.edu

Abstract paign motivates the need to study how these operations are
. . deployed acros: Itiple platforms as opposed to a single
Abstract. Strategic information operations (e.g. disinformation, polit- Social media platforms are often used as a tool for host- platform. 22
ical propaganda, and other forms of online manipulation) are critical ﬁe:'c‘:‘eg‘c igns, o polidcal (eg, o - This study new look at the information campaign
1 security. Two strateg D0<:f' how these operations span ‘multiple social media plat- a‘gairnsl. the ‘\yhl elTelAs by ﬂm‘xl?"zing the on three




Social Media Datasets

e YouTube
o Data collected using YouTube API Keywords
o 666 videos posted between June 19, 2014 and April 30, 2019 Data Collection K d
o For each video: date published, channel, and English translation of ata boflection Reywords
_ title and captions ‘white helmets’, ‘cascos blancos’,
o Twitter ‘capacetes brancos’, ‘caschi bianchr’,

o Data collected using GNIP API from April 1, 2018 to April 30, 2019 ‘casques blancs’, ‘elmetti bianchi’

o Selected only Twitter posts containing links to videos in YouTube ’ ’
dataset

o 14,776 tweets

e Facebook

‘weisshelme’, ‘weild helme’, ‘syrian
civil defence’, ‘6enble kackn’,
‘sl iadl gl

o Data collected using CrowdTangle’s URL endpoint query API

o Public Facebook posts with links to YouTube videos present in our
dataset.

o 961 posts by 611 users between April 1, 2018 and April 30, 2019

o Out of 666 videos, only 236 were present in this dataset.

23



Message promotion on YouTube

&}
)
o ©
.
fs) T8

" .;-1.. a

53 videos out of 666 with near-identical
content uploaded to 35 different channels

. 3 vane‘eeley .
Syﬂzn.amsaq d

calern Hon il iscn

@ e .*»u

@ Han Lkl nvar (
. iz Sl ‘wdlu / ’

@

toner @frmins -
| mms‘ srra @

Liogko-
A'am%ga

sn.: 5

Channels connected by near-identical videos. Heavy
presence of Russian media, Western journalists,
and information activists involved in content
coordination.
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Inorganic Activity from Top-level Comments on YouTube

e 62 out of 666 videos had near-duplicate e (4
comments ? | é ..
<0
e Out of 14K comments, 241 have at least one near . \ .’-’ /‘&:‘fh
duplicate o e & =
[
@ * ¢ %o,
Videos-Comments Network s %ﬂ” *84{"’
e 62 videos (red nodes) o i o'"‘“b'u’/‘ \:;‘35 2
e 241 comments (blue nodes) Cee oo
: s ® sl
e Green edges represent a comment to a video o ,?f
e Orange edges represent a pair of near-duplicate »;ﬁé’.
ge edges rep p p {. :

comments
-
& ¢

25



How are YouTube videos posted on Twitter and Facebook?

e Nodes are: P " B R

o Red: YouTube videos (144) . / TR A L

o Blue: Twitter users (471) -;' s ...' ) . T " . 2 ©

o Green: Facebook users (161) v K 4 . #.
e Time threshold of 52 seconds computed |, * ,k.iﬂ*f" 4 - , 2

based on an inter-arrival analysis
between posts to the same video
e \We connect social media user accounts
that post the same YouTube videos
within 52 seconds
o 450 edges




Agenda Broadcasting
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Example: Coordinated Video Recurrence

e Recurrent coordinated attempts
among Twitter users in promoting
videos from two channels.

e One Twitter account repeatedly posted
one video with always the same
message.

o This user posted one video 16
times, and other users
coordinated repeatedly by posting
simultaneously

®—-—
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Take-away messages

e Different graph definitions can highlight different issues

e In these examples we reduced datasets to manageable-size graphs
o Filter datasets by keywords to select only topic-specific content
o Intersection of datasets (YouTube and (Twitter or Facebook)) reduces graphs further
e Automatic tools that detect/quantify coordination in message promotion can

help educate users
o No need to identify true vs fake news (which is hard to automize)
o Just signal visibly that message is suspiciously promoted by synchronized user accounts
o Caveat: sometimes users react organically at the same time due to big breaking news

30
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Ty e ETHziirich

>
Torsten Hoefler - background |

= Teaching at ETH Zurich
» High-performance Computing, typically very large scale, helped to design top-5 systems
» Large-scale machine learning
» All with irregular graphs!
= View between hardware/software/algorithms
* Enjoys fundamental principles and mathematical models

Large-scale Graph Processing Graph Neural Networks Euclidian Embeddings

- All about efficiency - Embeddings for vertices - Vertices are embedding vectors
- Compressed representation - Maintain discrete graph - Approximate graph structure
- Q(log(n)) bits per vertex structure at high cost mixed with semantics
- Binary distances - Add embeddings to encode - Quite elegant 0(1) encoding
- Additional bits for weights structure and semantics per vertex

- Approximate graphs needed -How to approximate? - Nice tradeoffs for approximation



Processing large graphs

70 trillion edges
on 10 million
cores

12-trillion edge
real-world graph

(Internet) in 8.5s
per iteration

oy e ETHzirich

Gordon Bell Prize

ShenTu: Processing Multi-Trillion Edge Graphs on
Millions of Cores in Seconds ®

[
Heng Lin'2, Xiaowei Zhu'”, Bowen Yu', Xiongchao Tang!, Wei Xue!, Wenguang Chen!,
Lufei Zhang?, Torsten Hoefler*, Xiaosong Ma’, Xin Liu®, Weimin Zheng', and Jingfang Xu’

L Abstract—Graphs are an important abstraction used in many
scientific fields. With the magnitude of graph-structured data
constantly increasing, effective data analytics requires efficient
and scalable graph pr ing sy . Although HPC systems
have long been used for scientific computing, people have only
recently started to assess their potential for graph processing,
a workload with inherent load imbalance, lack of locality,
and access irregularity. We propose ShenTu®, the first general-
purpose graph processing framework that can efficiently utilize
an entire Petascale system to process multi-trillion edge graphs in
ds. ShenTu embodies four key inno hardware spe-
cialization, supernode routing, on-chip sorting, and degree-aware
messaging, which together enable its unprecedented performance
and scalability. It can traverse a record-size 70-trillion-edge graph
in seconds. Furthermore, ShenTu enables the processing of a
spam detection problem on a 12-trillion edge Internet graph,
making it possible to identify trustworthy and spam webpages
directly at the fine-grained page level.
Index Terms—Application programming interfaces; Big data
applications; Data analysis; Graph theory; Supercomputers

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

ShenTu enables highly efficient general-purpose graph pro-
cessing with novel use of heterogeneous cores and extremely
large networks, scales to the full TaihuLight, and enables graph
analytics on 70-trillion-edge graphs. It computes PageRank
and TrustRank distributions for an unprecedented 12-trillion-

edge real-world web graph in 8.5 seconds per iteration.

finalist with pure
graphs!

III. OVERVIEW OF THE PROBLEM

Graphs are one of the most important tools to model
complex systems. Scientific graph structures range from multi-
billion-edge graphs (e.g., in protein interactions, genomics,
epidemics, and social networks) to trillion-edge ones (e.g., in
connectomics and internet connectivity). Timely and efficient
processing of such large graphs is not only required to advance
scientific progress but also to solve important societal chal-
lenges such as detection of fake content or to enable complex
data analytics tasks, such as personalized medicine.

Improved scientific data acquisition techniques fuel th
rapid growth of large graphs. For example, cheap sequeg
techniques lead to massive graphs representing millions
man individuals as annotated paths, enabling quick advan
medical data analytics [1]. For each individual, human ge
researchers currently assemble de Bruijn graphs with o
billion vertices/edges [2]. Similarly, connectomics moq
human brain, with over 100 billion neurons and ai
7,000 synaptic connections each [3].

Meanwhile, researchers face unprecedented challenges in
the study of human interaction graphs. Malicious activities
such as the distribution of phishing emails or fake content, as
well as massive scraping of private data, are posing threats to
human society. It is necessary to scale graph analytics with the

Still? Largest
documented
graph job.
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Ty e ETHziirich

Will graphs survive contact with ML? 5%

ICML’2

PROGRAML: A Graph-based Program Representation for Data Flow]Analysis

and Compiler Optimizations

Motif Prediction with Graph Neural Networks

1ETH Zurich

ABSTRACT

Maciej Besta'f, Raphael Grob!, Cesare Miglioliz, Nicola Bernold,
Grzegorz Kwasniewski!, Gabriel Gjini', Raghavendra Kanakagiri®, Saleh Ashkboos?,
Lukas Gianinazzi', Nikoli Drydenl, Torsten Hoefler!'

Research Center for Statistics, University of Geneva ~ 3UIUC TCorresponding authors

Chris Cummins "' Zacharias V. Fisches "> T§

Parallel and Distributed Graph Neural Networks:

Machine learning (ML) is increasingly scen
viable approach for building compiler optin]
tion heuristics, but many ML methods caf
replicate even the simplest of the data flow a
ses that are critical to making good optimiz
decisions. We posit that if ML cannot do
then it is insufficiently able to reason about
grams. We formulate data flow analyses as s
vised learning tasks and introduce a large
dataset of programs and their corresponding
bels from several analyses. We use this da

An In-Depth Concurrency Analysis

Maciej Besta and Torsten Hoefler
Department of Computer Science, ETH Zurich

Abstract—Graph neural networks (GNNs) are among the most powerful tools in deep learning. They routinely solve complex problems

4- on unstructured networks, such as node classification, graph classification, or link prediction, with high accuracy. However, both

Learning (

inference and training of GNNs are complex, and they uniquely combine the features of irregular graph processing with dense and
regular computations. This complexity makes it very challenging to execute GNNs efficiently on modern massively parallel
architectures. To alleviate this, we first design a taxonomy of parallelism in GNNs, considering data and model parallelism, and different
forms of pipelining. Then, we use this taxonomy to investigate the amount of parallelism in numerous GNN models, GNN-driven
machine learning tasks, software frameworks, or hardware accelerators. We use the work-depth model, and we also assess

Lukd communication volume and synchronization. We specifically focus on the sparsity/density of the associated tensors, in order to

ABSTRACT

We present a novel neural architecty
tion problems where the solution co:
allowing us to solve hard problems I}
our model using reinforcement learn
ents, which gives us both a greedy a
architecture builds on a graph attent;

’

inductive biases to improve solution quality. OuF learned deter-

ministic heuristics for graph coloring give better solutions than
classical degree-based greedy heuristics and only take seconds to
apply to graphs with tens of thousands of vertices. Moreover, our
probabilistic policies outperform all greedy state-of-the-art coloring
baselines and a machine learning baseline. Finally, we show that
our approach also generalizes to other problems by evaluating it on

Figure 1: Spatial locality of the decoding. After labeling a
node, only its neighbors’ attention weights change. The ex-
ample shows how a graph is 2-colored using the vertex order
c,e,b,a,d. The nodes whose attention weights change have
a box around them. For example, when the first node c is

understand how to effectively apply techniques such as vectorization. We also formally analyze GNN pipelining, and we generalize the
P established Message-Passing class of GNN models to cover arbitrary pipeline depths, facilitating future optimizations. Finally, we
investigate different forms of asynchronicity, navigating the path for future asynchronous parallel GNN pipelines. The outcomes of our
analysis are synthesized in a set of insights that help to maximize GNN performance, and a comprehensive list of challenges and
opportunities for further research into efficient GNN computations. Our work will help to advance the design of future GNNs.

Index Terms—Parallel Graph Neural Networks, Distributed Graph Neural Networks, Parallel Graph Convolution Networks, Distributed
Graph Convolution Networks, Parallel Graph Attention Networks, Distributed Graph Attention Networks, Parallel Message Passing
Neural Networks, Distributed Message Passing Neural Networks, Asynchronous Graph Neural Networks.

lems in graph mining. How-
hnce of higher-order network
fed motifs are the first-class
prediction schemes fail to
is, we establish a general
e several heuristics that
to appear. To make the
among others - correla-
act of some arriving links
‘motif. Finally, for highest
ork (GNN) architecture
ffers vertex features and
structural properties of
do not need any training,

KDD’2

example, one could use motif prediction to find probable missing
clusters of interactions in biological (e.g., protein) networks, and
use the outcomes to limit the number of expensive experiments
ducted to find missing ions [65, 67].

In this paper, we first (Section 3) establish and formally describe
a general motif prediction problem, going beyond link prediction
and showing how to predict higher-order network patterns that
will appear in the future (or which may be missing from the data).
Akey challenge is the appropriate problem formulation. Similarly to
link prediction, one wants a score function that - for a given vertex
set Vyy - assesses the chances for a given motif to appear. Still, the
function must consider the combinatorially increased complexity
of the problem (compared to link prediction). In general, contrary
to a single link, a motif may be formed by an arbitrary set Vy; of
vertices, and the number of potential edges between these vertices

. 2 - 5

Neural Graph Databases

ick Iff'  Florian Scheidl' Kazuki Osawa'  Nikoli Dryden’
dstawski>® Tiancheng Chen' Torsten Hoefler':

Department of Computer Science, ETH Zurich
farsaw University of Technology, Warsaw, Poland
STCL Research Europe, Warsaw, Poland
fCorresponding authors:
ciej.besta, torsten.hoefler}@inf.ethz.ch

Graph databases (GDBs) enable processing and analysis of unstructured, complex,
rich, and usually vast graph datasets. Despite the large significance of GDBs
in both academia and industry, little effort has been made into integrating them
with the predictive power of graph neural networks (GNNs). In this work, we
show how to seamlessly combine nearly any GNN model with the computational
capabilities of GDBs. For this, we observe that the majority of these systems

Abstract
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The future may not be big graphs: embeddings to represent relations!

= E.g., cosine distance as metric for “connectedness”
= Equivalentto vector angle for normalized vectors

orthogonal vectors -> not connected, collinear vectors -> maximally connected, and everything in between ©

= Used in Heavily used in ML today
= Basis of attention mechanisms — e.g., transformers
* Nice binary coding possible —get to O(1) bits
* nice tradeoff between accuracy and overhead
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Graph Mining with Probabilistic Set Representations
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Abstract—Important graph mining problems such as Cluster- ___Moreover. there are_many _heuristics for
ing af
these

Slim Graph: Practical Lossy Graph Compression
for Approximate Graph Processing, Storage, and Analytics

Maciej Besta, Simon Weber, Lukas Gianinazzi, Robert Gerstenberger,
Andrey Ivanov, Yishai Oltchik, Torsten Hoefler
Department of Computer Science; ETH Zurich

ABSTRACT require unprecedented amounts of compute power, storage,
We propose Slim Graph: the first programming model and and cnergy. For example, running PageRank on the Sogou
framework for practical lossy graph compression that fa-  Webgraph using 38,656 compute nodes (10,050,560 cores) on
cilitates high-performance approximate graph processing, ~ the Sunway TaihuLight supercomputer [71] (nearly the full
storage, and analytics. Slim Graph enables the developer to scale of TaihuLight) takes 8 minutes [101]. The sizes of such
express numerous compression schemes using small and pro-  datasets will continue to grow; Sogou Corp. expects a ~60
grammable compression kernels that can access and modify _ trillion edge graph dataset with whole-web crawling. Lower-
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Abstract

The growing energy and performance costs of deep learning have driven the community to
reduce the size of neural networks by selectively pruning components. Similarly to their
biological counterparts, sparse networks generalize just as well, sometimes even better than,
the original dense networks. Sparsity promises to reduce the memory footprint of regular




Big data belongs in (knowledge) graphs!

We briefly explained why and how.

Time for your questions.



